On Sparse Channel Estimation
نویسنده
چکیده
Channel Estimation is an essential component in applications such as radar and data communication. In multi path time varying environments, it is necessary to estimate time-shifts, scale-shifts (the wideband equivalent of Doppler-shifts), and the gains/phases of each of the multiple paths. With recent advances in sparse estimation (or " compressive sensing "), new estimation techniques have emerged which yield more accurate estimates of these channel parameters than traditional strategies. These estimation strategies, however, restrict potential estimates of time-shifts and scale-shifts to a finite set of values separated by a choice of grid spacing. A small grid spacing increases the number of potential estimates, thus lowering the quanti-zation error, but also increases complexity and estimation time. Conversely, a large grid spacing lowers the number of potential estimates, thus lowering the complexity and estimation time, but increases the quantization error. In this thesis, we derive an expression which relates the choice of grid spacing to the mean-squared quantiza-tion error. Furthermore, we consider the case when scale-shifts are approximated by Doppler-shifts, and derive a similar expression relating the choice of the grid spacing and the quantization error. Using insights gained from these expressions, we further explore the effects of the choice and grid spacing, and examine when a wideband model can be well approximated by a narrowband model.
منابع مشابه
Improved Channel Estimation for DVB-T2 Systems by Utilizing Side Information on OFDM Sparse Channel Estimation
The second generation of digital video broadcasting (DVB-T2) standard utilizes orthogonal frequency division multiplexing (OFDM) system to reduce and to compensate the channel effects by utilizing its estimation. Since wireless channels are inherently sparse, it is possible to utilize sparse representation (SR) methods to estimate the channel. In addition to sparsity feature of the channel, the...
متن کاملDictionary Learning Based Sparse Channel Representation and Estimation for FDD Massive MIMO Systems
Downlink beamforming in FDD Massive MIMO systems is challenging due to the large training and feedback overhead, which is proportional to the number of antennas deployed at the base station, incurred by traditional downlink channel estimation techniques. Leveraging the compressive sensing framework, compressed channel estimation algorithm has been applied to obtain accurate channel estimation w...
متن کاملImproved Sparse Channel Estimation for Cooperative Communication Systems
Accurate channel state information (CSI) is necessary at receiver for coherent detection in amplify-and-forward (AF) cooperative communication systems. To estimate the channel, traditional methods, that is, least squares (LS) and least absolute shrinkage and selection operator (LASSO), are based on assumptions of either dense channel or global sparse channel. However, LS-based linear method neg...
متن کاملLeast Mean Square Algorithm with Application to Improved Adaptive Sparse Channel Estimation
Least mean square (LMS) based adaptive algorithms have been attracted much attention since their low computational complexity and robust recovery capability. To exploit the channel sparsity, LMS-based adaptive sparse channel estimation methods, e.g., L1-norm LMS or zero-attracting LMS (sparse LMS or ZA-LMS), reweighted zero attracting LMS (RZA-LMS) and Lp-norm LMS (LP-LMS), have been proposed b...
متن کاملImproved least mean square algorithm with application to adaptive sparse channel estimation
Least mean square (LMS)-based adaptive algorithms have attracted much attention due to their low computational complexity and reliable recovery capability. To exploit the channel sparsity, LMS-based adaptive sparse channel estimation methods have been proposed based on different sparse penalties, such as l1-norm LMS or zeroattracting LMS (ZA-LMS), reweighted ZA-LMS, and lp-norm LMS. However, th...
متن کاملCompressed Channel Estimation of Two-Way Relay Networks Using Mixed-Norm Sparse Constraint
In this study, compressed channel estimation method for sparse multipath two-way relay networks is investigated. Conventional estimation methods, e.g., Least Square (LS) and Minimum Mean Square Error (MMSE), are based on the dense assumption of relay channel and cannot exploit channel sparsity which has been verified by lots of channel measurements. Unlike the previous methods, we propose a com...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/0906.0964 شماره
صفحات -
تاریخ انتشار 2009